Building a Transformer Model for Language Translation


# Transformer model implementation in PyTorch

 

import random

import os

import re

import unicodedata

import zipfile

 

import requests

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import tokenizers

import tqdm

 

 

#

# Data preparation

#

 

 

# Download dataset provided by Anki: https://www.manythings.org/anki/ with requests

if not os.path.exists(“fra-eng.zip”):

    url = “http://storage.googleapis.com/download.tensorflow.org/data/fra-eng.zip”

    response = requests.get(url)

    with open(“fra-eng.zip”, “wb”) as f:

        f.write(response.content)

 

# Normalize text

# each line of the file is in the format “<english>\t<french>”

# We convert text to lowercasee, normalize unicode (UFKC)

def normalize(line):

    “”“Normalize a line of text and split into two at the tab character”“”

    line = unicodedata.normalize(“NFKC”, line.strip().lower())

    eng, fra = line.split(“\t”)

    return eng.lower().strip(), fra.lower().strip()

 

text_pairs = []

with zipfile.ZipFile(“fra-eng.zip”, “r”) as zip_ref:

    for line in zip_ref.read(“fra.txt”).decode(“utf-8”).splitlines():

        eng, fra = normalize(line)

        text_pairs.append((eng, fra))

 

#

# Tokenization with BPE

#

 

if os.path.exists(“en_tokenizer.json”) and os.path.exists(“fr_tokenizer.json”):

    en_tokenizer = tokenizers.Tokenizer.from_file(“en_tokenizer.json”)

    fr_tokenizer = tokenizers.Tokenizer.from_file(“fr_tokenizer.json”)

else:

    en_tokenizer = tokenizers.Tokenizer(tokenizers.models.BPE())

    fr_tokenizer = tokenizers.Tokenizer(tokenizers.models.BPE())

 

    # Configure pre-tokenizer to split on whitespace and punctuation, add space at beginning of the sentence

    en_tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=True)

    fr_tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=True)

 

    # Configure decoder: So that word boundary symbol “Ġ” will be removed

    en_tokenizer.decoder = tokenizers.decoders.ByteLevel()

    fr_tokenizer.decoder = tokenizers.decoders.ByteLevel()

 

    # Train BPE for English and French using the same trainer

    VOCAB_SIZE = 8000

    trainer = tokenizers.trainers.BpeTrainer(

        vocab_size=VOCAB_SIZE,

        special_tokens=[“[start]”, “[end]”, “[pad]”],

        show_progress=True

    )

    en_tokenizer.train_from_iterator([x[0] for x in text_pairs], trainer=trainer)

    fr_tokenizer.train_from_iterator([x[1] for x in text_pairs], trainer=trainer)

 

    en_tokenizer.enable_padding(pad_id=en_tokenizer.token_to_id(“[pad]”), pad_token=“[pad]”)

    fr_tokenizer.enable_padding(pad_id=fr_tokenizer.token_to_id(“[pad]”), pad_token=“[pad]”)

 

    # Save the trained tokenizers

    en_tokenizer.save(“en_tokenizer.json”, pretty=True)

    fr_tokenizer.save(“fr_tokenizer.json”, pretty=True)

 

# Test the tokenizer

print(“Sample tokenization:”)

en_sample, fr_sample = random.choice(text_pairs)

encoded = en_tokenizer.encode(en_sample)

print(f“Original: {en_sample}”)

print(f“Tokens: {encoded.tokens}”)

print(f“IDs: {encoded.ids}”)

print(f“Decoded: {en_tokenizer.decode(encoded.ids)}”)

print()

 

encoded = fr_tokenizer.encode(“[start] “ + fr_sample + ” [end]”)

print(f“Original: {fr_sample}”)

print(f“Tokens: {encoded.tokens}”)

print(f“IDs: {encoded.ids}”)

print(f“Decoded: {fr_tokenizer.decode(encoded.ids)}”)

print()

 

 

#

# Create PyTorch dataset for the BPE-encoded translation pairs

#

 

class TranslationDataset(torch.utils.data.Dataset):

    def __init__(self, text_pairs, en_tokenizer, fr_tokenizer):

        self.text_pairs = text_pairs

        self.en_tokenizer = en_tokenizer

        self.fr_tokenizer = fr_tokenizer

 

    def __len__(self):

        return len(self.text_pairs)

 

    def __getitem__(self, idx):

        eng, fra = self.text_pairs[idx]

        return eng, “[start] “ + fra + ” [end]”

 

 

def collate_fn(batch):

    en_str, fr_str = zip(*batch)

    en_enc = en_tokenizer.encode_batch(en_str, add_special_tokens=True)

    fr_enc = fr_tokenizer.encode_batch(fr_str, add_special_tokens=True)

    en_ids = [enc.ids for enc in en_enc]

    fr_ids = [enc.ids for enc in fr_enc]

    return torch.tensor(en_ids), torch.tensor(fr_ids)

 

 

BATCH_SIZE = 32

dataset = TranslationDataset(text_pairs, en_tokenizer, fr_tokenizer)

dataloader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)

 

 

# Test the dataset

for en_ids, fr_ids in dataloader:

    print(f“English: {en_ids}”)

    print(f“French: {fr_ids}”)

    break

 

 

#

# Transformer model components

#

 

def rotate_half(x):

    x1, x2 = x.chunk(2, dim=1)

    return torch.cat((x2, x1), dim=1)

 

 

def apply_rotary_pos_emb(x, cos, sin):

    return (x * cos) + (rotate_half(x) * sin)

 

 

class RotaryPositionalEncoding(nn.Module):

    def __init__(self, dim, max_seq_len=1024):

        super().__init__()

        N = 10000

        inv_freq = 1. / (N ** (torch.arange(0, dim, 2).float() / dim))

        position = torch.arange(max_seq_len).float()

        inv_freq = torch.cat((inv_freq, inv_freq), dim=1)

        sinusoid_inp = torch.outer(position, inv_freq)

        self.register_buffer(“cos”, sinusoid_inp.cos())

        self.register_buffer(“sin”, sinusoid_inp.sin())

 

    def forward(self, x, seq_len=None):

        if seq_len is None:

            seq_len = x.size(1)

        cos = self.cos[:seq_len].view(1, seq_len, 1, 1)

        sin = self.sin[:seq_len].view(1, seq_len, 1, 1)

        return apply_rotary_pos_emb(x, cos, sin)

 

 

class SwiGLU(nn.Module):

    def __init__(self, hidden_dim, intermediate_dim):

        super().__init__()

        self.gate = nn.Linear(hidden_dim, intermediate_dim)

        self.up = nn.Linear(hidden_dim, intermediate_dim)

        self.down = nn.Linear(intermediate_dim, hidden_dim)

        self.act = nn.SiLU()

 

    def forward(self, x):

        x = self.act(self.gate(x)) * self.up(x)

        x = self.down(x)

        return x

 

 

class GQA(nn.Module):

    def __init__(self, hidden_dim, num_heads, num_kv_heads=None, dropout=0.1):

        super().__init__()

        self.num_heads = num_heads

        self.num_kv_heads = num_kv_heads or num_heads

        self.head_dim = hidden_dim // num_heads

        self.num_groups = num_heads // num_kv_heads

        self.dropout = dropout

        self.q_proj = nn.Linear(hidden_dim, hidden_dim)

        self.k_proj = nn.Linear(hidden_dim, hidden_dim)

        self.v_proj = nn.Linear(hidden_dim, hidden_dim)

        self.out_proj = nn.Linear(hidden_dim, hidden_dim)

 

    def forward(self, q, k, v, mask=None, rope=None):

        q_batch_size, q_seq_len, hidden_dim = q.shape

        k_batch_size, k_seq_len, hidden_dim = k.shape

        v_batch_size, v_seq_len, hidden_dim = v.shape

 

        # projection

        q = self.q_proj(q).view(q_batch_size, q_seq_len, 1, self.head_dim).transpose(1, 2)

        k = self.k_proj(k).view(k_batch_size, k_seq_len, 1, self.head_dim).transpose(1, 2)

        v = self.v_proj(v).view(v_batch_size, v_seq_len, 1, self.head_dim).transpose(1, 2)

 

        # apply rotary positional encoding

        if rope:

            q = rope(q)

            k = rope(k)

 

        # compute grouped query attention

        q = q.contiguous()

        k = k.contiguous()

        v = v.contiguous()

        output = F.scaled_dot_product_attention(q, k, v,

                                                attn_mask=mask,

                                                dropout_p=self.dropout,

                                                enable_gqa=True)

        output = output.transpose(1, 2).reshape(q_batch_size, q_seq_len, hidden_dim).contiguous()

        output = self.out_proj(output)

        return output

 

 

class EncoderLayer(nn.Module):

    def __init__(self, hidden_dim, num_heads, num_kv_heads=None, dropout=0.1):

        super().__init__()

        self.self_attn = GQA(hidden_dim, num_heads, num_kv_heads, dropout)

        self.mlp = SwiGLU(hidden_dim, 4 * hidden_dim)

        self.norm1 = nn.RMSNorm(hidden_dim)

        self.norm2 = nn.RMSNorm(hidden_dim)

 

    def forward(self, x, mask=None, rope=None):

        # self-attention sublayer

        out = x

        out = self.norm1(x)

        out = self.self_attn(out, out, out, mask, rope)

        x = out + x

        # MLP sublayer

        out = self.norm2(x)

        out = self.mlp(out)

        return out + x

 

 

class DecoderLayer(nn.Module):

    def __init__(self, hidden_dim, num_heads, num_kv_heads=None, dropout=0.1):

        super().__init__()

        self.self_attn = GQA(hidden_dim, num_heads, num_kv_heads, dropout)

        self.cross_attn = GQA(hidden_dim, num_heads, num_kv_heads, dropout)

        self.mlp = SwiGLU(hidden_dim, 4 * hidden_dim)

        self.norm1 = nn.RMSNorm(hidden_dim)

        self.norm2 = nn.RMSNorm(hidden_dim)

        self.norm3 = nn.RMSNorm(hidden_dim)

 

    def forward(self, x, enc_out, mask=None, rope=None):

        # self-attention sublayer

        out = x

        out = self.norm1(out)

        out = self.self_attn(out, out, out, mask, rope)

        x = out + x

        # cross-attention sublayer

        out = self.norm2(x)

        out = self.cross_attn(out, enc_out, enc_out, None, rope)

        x = out + x

        # MLP sublayer

        x = out + x

        out = self.norm3(x)

        out = self.mlp(out)

        return out + x

 

 

class Transformer(nn.Module):

    def __init__(self, num_layers, num_heads, num_kv_heads, hidden_dim,

                 max_seq_len, vocab_size_src, vocab_size_tgt, dropout=0.1):

        super().__init__()

        self.rope = RotaryPositionalEncoding(hidden_dim // num_heads, max_seq_len)

        self.src_embedding = nn.Embedding(vocab_size_src, hidden_dim)

        self.tgt_embedding = nn.Embedding(vocab_size_tgt, hidden_dim)

        self.encoders = nn.ModuleList([

            EncoderLayer(hidden_dim, num_heads, num_kv_heads, dropout) for _ in range(num_layers)

        ])

        self.decoders = nn.ModuleList([

            DecoderLayer(hidden_dim, num_heads, num_kv_heads, dropout) for _ in range(num_layers)

        ])

        self.out = nn.Linear(hidden_dim, vocab_size_tgt)

 

    def forward(self, src_ids, tgt_ids, src_mask=None, tgt_mask=None):

        # Encoder

        x = self.src_embedding(src_ids)

        for encoder in self.encoders:

            x = encoder(x, src_mask, self.rope)

        enc_out = x

        # Decoder

        x = self.tgt_embedding(tgt_ids)

        for decoder in self.decoders:

            x = decoder(x, enc_out, tgt_mask, self.rope)

        return self.out(x)

 

 

model_config = {

    “num_layers”: 4,

    “num_heads”: 8,

    “num_kv_heads”: 4,

    “hidden_dim”: 128,

    “max_seq_len”: 768,

    “vocab_size_src”: len(en_tokenizer.get_vocab()),

    “vocab_size_tgt”: len(fr_tokenizer.get_vocab()),

    “dropout”: 0.1,

}

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

model = Transformer(**model_config).to(device)

print(model)

 

# Training

 

print(“Model created with:”)

print(f”  Input vocabulary size: {model_config[‘vocab_size_src’]}”)

print(f”  Output vocabulary size: {model_config[‘vocab_size_tgt’]}”)

print(f”  Number of layers: {model_config[‘num_layers’]}”)

print(f”  Number of heads: {model_config[‘num_heads’]}”)

print(f”  Number of KV heads: {model_config[‘num_kv_heads’]}”)

print(f”  Hidden dimension: {model_config[‘hidden_dim’]}”)

print(f”  Max sequence length: {model_config[‘max_seq_len’]}”)

print(f”  Dropout: {model_config[‘dropout’]}”)

print(f”  Total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}”)

 

def create_causal_mask(seq_len, device):

    “”

    Create a causal mask for autoregressive attention.

 

    Args:

        seq_len: Length of the sequence

 

    Returns:

        Causal mask of shape (seq_len, seq_len)

    ““”

    mask = torch.triu(torch.full((seq_len, seq_len), float(‘-inf’), device=device), diagonal=1)

    return mask

 

 

def create_padding_mask(batch, padding_token_id):

    “”

    Create a padding mask for a batch of sequences.

 

    Args:

        batch: Batch of sequences, shape (batch_size, seq_len)

        padding_token_id: ID of the padding token

 

    Returns:

        Padding mask of shape (batch_size, seq_len, seq_len)

    ““”

    batch_size, seq_len = batch.shape

    device = batch.device

    padded = torch.zeros_like(batch, device=device).float().masked_fill(batch == padding_token_id, float(‘-inf’))

    mask = torch.zeros(batch_size, seq_len, seq_len, device=device) + padded[:,:,None] + padded[:,None,:]

    return mask[:, None, :, :]

 

 

# Train unless model.pth exists

loss_fn = nn.CrossEntropyLoss(ignore_index=fr_tokenizer.token_to_id(“[pad]”))

if os.path.exists(“transformer.pth”):

    model.load_state_dict(torch.load(“transformer.pth”))

else:

    N_EPOCHS = 60

    LR = 0.005

    WARMUP_STEPS = 1000

    CLIP_NORM = 5.0

    best_loss = float(‘inf’)

    optimizer = optim.Adam(model.parameters(), lr=LR)

    warmup_scheduler = optim.lr_scheduler.LinearLR(optimizer, start_factor=0.01, end_factor=1.0, total_iters=WARMUP_STEPS)

    cosine_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=N_EPOCHS * len(dataloader) WARMUP_STEPS, eta_min=0)

    scheduler = optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler], milestones=[WARMUP_STEPS])

    print(f“Training for {N_EPOCHS} epochs with {len(dataloader)} steps per epoch”)

 

    for epoch in range(N_EPOCHS):

        model.train()

        epoch_loss = 0

        for en_ids, fr_ids in tqdm.tqdm(dataloader, desc=“Training”):

            # Move the “sentences” to device

            en_ids = en_ids.to(device)

            fr_ids = fr_ids.to(device)

            # create source mask as padding mask, target mask as causal mask

            src_mask = create_padding_mask(en_ids, en_tokenizer.token_to_id(“[pad]”))

            tgt_mask = create_causal_mask(fr_ids.shape[1], device).unsqueeze(0) + create_padding_mask(fr_ids, fr_tokenizer.token_to_id(“[pad]”))

            # zero the grad, then forward pass

            optimizer.zero_grad()

            outputs = model(en_ids, fr_ids, src_mask, tgt_mask)

            # compute the loss: compare 3D logits to 2D targets

            loss = loss_fn(outputs[:, :1, :].reshape(1, outputs.shape[1]), fr_ids[:, 1:].reshape(1))

            loss.backward()

            if CLIP_NORM:

                torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, error_if_nonfinite=False)

            optimizer.step()

            scheduler.step()

            epoch_loss += loss.item()

        print(f“Epoch {epoch+1}/{N_EPOCHS}; Avg loss {epoch_loss/len(dataloader)}; Latest loss {loss.item()}”)

        # Test

        model.eval()

        epoch_loss = 0

        with torch.no_grad():

            for en_ids, fr_ids in tqdm.tqdm(dataloader, desc=“Evaluating”):

                en_ids = en_ids.to(device)

                fr_ids = fr_ids.to(device)

                src_mask = create_padding_mask(en_ids, en_tokenizer.token_to_id(“[pad]”))

                tgt_mask = create_causal_mask(fr_ids.shape[1], device).unsqueeze(0) + create_padding_mask(fr_ids, fr_tokenizer.token_to_id(“[pad]”))

                outputs = model(en_ids, fr_ids, src_mask, tgt_mask)

                loss = loss_fn(outputs[:, :1, :].reshape(1, outputs.shape[1]), fr_ids[:, 1:].reshape(1))

                epoch_loss += loss.item()

        print(f“Eval loss: {epoch_loss/len(dataloader)}”)

        if epoch_loss < best_loss:

            best_loss = epoch_loss

            torch.save(model.state_dict(), f“transformer-epoch-{epoch+1}.pth”)

 

    # Save the final model after training

    torch.save(model.state_dict(), “transformer.pth”)

 

# Test for a few samples

model.eval()

N_SAMPLES = 5

MAX_LEN = 60

with torch.no_grad():

    start_token = torch.tensor([fr_tokenizer.token_to_id(“[start]”)]).to(device)

    for en, true_fr in random.sample(dataset.text_pairs, N_SAMPLES):

        en_ids = torch.tensor(en_tokenizer.encode(en).ids).unsqueeze(0).to(device)

 

        # get context from encoder

        src_mask = create_padding_mask(en_ids, en_tokenizer.token_to_id(“[pad]”))

        x = model.src_embedding(en_ids)

        for encoder in model.encoders:

            x = encoder(x, src_mask, model.rope)

        enc_out = x

 

        # generate output from decoder

        fr_ids = start_token.unsqueeze(0)

        for _ in range(MAX_LEN):

            tgt_mask = create_causal_mask(fr_ids.shape[1], device).unsqueeze(0)

            tgt_mask = tgt_mask + create_padding_mask(fr_ids, fr_tokenizer.token_to_id(“[pad]”))

            x = model.tgt_embedding(fr_ids)

            for decoder in model.decoders:

                x = decoder(x, enc_out, tgt_mask, model.rope)

            outputs = model.out(x)

 

            outputs = outputs.argmax(dim=1)

            fr_ids = torch.cat([fr_ids, outputs[:, 1:]], axis=1)

            if fr_ids[0, 1] == fr_tokenizer.token_to_id(“[end]”):

                break

 

        # Decode the predicted IDs

        pred_fr = fr_tokenizer.decode(fr_ids[0].tolist())

        print(f“English: {en}”)

        print(f“French: {true_fr}”)

        print(f“Predicted: {pred_fr}”)

        print()

Leave a Reply

Your email address will not be published. Required fields are marked *